Open Access
Silencing long non-coding RNA MIAT ameliorates myocardial dysfunction induced by myocardial infarction via MIAT/miR-10a-5p/EGR2 axis
Author(s) -
Xiaohong Cao,
Qinghua Ma,
Bin Wang,
Qingqiang Qian,
Ning Liu,
Tiejun Liu,
Xiaoliu Dong
Publication year - 2021
Publication title -
aging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 90
ISSN - 1945-4589
DOI - 10.18632/aging.202785
Subject(s) - long non coding rna , gene silencing , myocardial infarction , cardiology , medicine , rna , biology , genetics , gene
Long non-coding RNA (lncRNA) myocardial infarction-associated transcript (MIAT) has been widely-demonstrated to function as diagnostic markers for acute myocardial infarction (MI). This study was designed to explore the modulatory role of MIAT and its underlying molecular mechanism in MI. Firstly, MI mouse model was developed via ligation of the descending branch of the left coronary artery, and cell model was established through exposure to hypoxic conditions . Online prediction indicated that MIAT could bind to microRNA-10a-5p (miR-10a-5p), while miR-10a-5p was highlighted to bind to early growth response gene-2 (EGR2). MIAT and EGR2 were subsequently determined to be highly-expressed, whereas miR-10a-5p was found to be poorly-expressed in cardiomyocytes exposed to hypoxia as well as in MI mice using RT-qPCR and Western blot assay. The binding relationships between MIAT and miR-10a-5p, and between miR-10a-5p and EGR2 were further confirmed by dual-luciferase reporter and RNA immunoprecipitation assays. The results of in vitro and in vivo experimentation also suggested that overexpression of miR-10a-5p or silencing of MIAT and EGR2 reduced cardiomyocyte apoptosis and increased ATP content, thus alleviating the impairment of cardiac function following MI. In a word, inhibition of MIAT protects against cardiac dysfunction induced by MI through the crosstalk with miR-10a-5p/EGR2.