z-logo
open-access-imgOpen Access
Male-specific age estimation based on Y-chromosomal DNA methylation
Author(s) -
Athina Vidaki,
Diego Montiel González,
Benjamin Planterose Jiménez,
Manfred Kayser
Publication year - 2021
Publication title -
aging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 90
ISSN - 1945-4589
DOI - 10.18632/aging.202775
Subject(s) - dna methylation , estimation , genetics , biology , methylation , dna , computational biology , computer science , gene , engineering , gene expression , systems engineering
Although DNA methylation variation of autosomal CpGs provides robust age predictive biomarkers, no male-specific age predictor exists based on Y-CpGs yet. Since sex chromosomes play an important role in aging, a Y-chromosome-based age predictor would allow studying male-specific aging effects and would also be useful in forensics. Here, we used blood-based DNA methylation microarray data of 1,057 males from six cohorts aged 15-87 and identified 75 Y-CpGs with an interquartile range of ≥0.1. Of these, 22 and six were significantly hyper- and hypomethylated with age (p(cor)<0.05, Bonferroni), respectively. Amongst several machine learning algorithms, a model based on support vector machines with radial kernel performed best in male-specific age prediction. We achieved a mean absolute deviation (MAD) between true and predicted age of 7.54 years (cor=0.81, validation) when using all 75 Y-CpGs, and a MAD of 8.46 years (cor=0.73, validation) based on the most predictive 19 Y-CpGs. The accuracies of both age predictors did not worsen with increased age, in contrast to autosomal CpG-based age predictors that are known to predict age with reduced accuracy in the elderly. Overall, we introduce the first-of-its-kind male-specific epigenetic age predictor for future applications in aging research and forensics.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here