z-logo
open-access-imgOpen Access
Functional predication of differentially expressed circRNAs/lncRNAs in the prefrontal cortex of Nrf2-knockout mice
Author(s) -
Yanjing Gao,
Runjiao Zhang,
Qing Liu,
Shao-Guang Sun,
Mao-Yang Qi,
Yue Wang,
Dandan Geng,
Lei Wang
Publication year - 2021
Publication title -
aging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 90
ISSN - 1945-4589
DOI - 10.18632/aging.202688
Subject(s) - long non coding rna , microrna , biology , prefrontal cortex , neuroprotection , microarray , computational biology , neuroscience , neurodegeneration , microarray analysis techniques , rna , gene expression , genetics , gene , medicine , cognition , disease
In the central nervous system, nuclear factor erythroid-2-related factor 2 (Nrf2) protects neurons from oxidant injury, thereby ameliorating neurodegeneration. We explored the key circular RNAs (circRNAs) and long non-coding RNAs (lncRNAs) involved in Nrf2-induced neuroprotection. We used microarrays to examine the circRNAs (DEcircRNAs), lncRNAs (DElncRNAs) and mRNAs (DEmRNAs) differentially expressed between Nrf2 (+/+) and Nrf2 (-/-) mice and identified DEcircRNA/DElncRNA-miRNA-DEmRNA interaction networks. In total, 197 DEcircRNAs, 685 DElncRNAs and 356 DEmRNAs were identified in prefrontal cortical tissues from Nrf2 (-/-) mice. The expression patterns of selected DEcircRNAs (except for mmu_circ_0003404) and DElncRNAs in qRT-PCR analyses were generally consistent with the microarray analysis results. Functional annotation of the DEmRNAs in the DEcircRNA/DElncRNA-miRNA-DEmRNA networks indicated that five non-coding RNAs (mmu_circ_0000233, ENSMUST204847, NONMMUT024778, NONMMUT132160 and NONMMUT132168) may contribute to Nrf2 activity, with the help of mmu_circ_0015035 and NONMMUT127961. The results also revealed that four non-coding RNAs (cicRNA.20127, mmu_circ_0012936, ENSMUST194077 and NONMMUT109267) may influence glutathione metabolism. Additionally, 44 DEcircRNAs and 7 DElncRNAs were found to possess coding potential. These findings provide clues to the molecular pathways through which Nrf2 protects neurons.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here