z-logo
open-access-imgOpen Access
MicroRNA-95-3p serves as a contributor to cisplatin resistance in human gastric cancer cells by targeting EMP1/PI3K/AKT signaling
Author(s) -
Qingfeng Ni,
Yan Zhang,
Ran Tao,
Xiaolong Li,
Jianwei Zhu
Publication year - 2021
Publication title -
aging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 90
ISSN - 1945-4589
DOI - 10.18632/aging.202679
Subject(s) - microrna , pi3k/akt/mtor pathway , cisplatin , protein kinase b , cancer research , cancer , resistance (ecology) , medicine , signal transduction , oncology , microbiology and biotechnology , biology , gene , genetics , chemotherapy , ecology
MicroRNAs (miRNAs) are thought to be involved in the development of cisplatin (DDP) resistance in gastric cancer (GC). Using RNA sequencing analysis (RNA-seq), we found that miR-95-3p is associated with DDP resistance in GC. We discovered that miR-95-3p is highly expressed in DDP-resistant GC tissues and cell lines (SGC7901/DDP and AGS/DDP). Furthermore, results from the BrdU and MTT assays indicated that miR-95-3p promotes GC cell proliferation. Additionally, data from transwell chamber assay, wound healing test and in vivo experiments illustrated that miR-95-3p can effectively promote invasion, migration and tumorigenic capacity, respectively, of DDP-resistant GC cells. Subsequently, results from dual luciferase assay and qRT-PCR collectively indicated that EMP1 is a target of miR-95-3p with inhibitory function through suppression of the EMT process and drug-resistance proteins. Furthermore, PI3K/AKT was identified as a downstream pathway of miR-95-3p, which promotes DDP resistance in GC. In summary, miR-95-3p helped develop DDP-resistance through down-regulation of EMP1 and increasing phosphorylation of the PI3K/Akt pathway in GC.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom