z-logo
open-access-imgOpen Access
Bromodomain-containing protein 4 silencing by microRNA-765 produces anti-ovarian cancer cell activity
Author(s) -
Yongjun Ji,
Yang Shao,
Jie Zhang,
Wen Xu,
Ping Qiang
Publication year - 2021
Publication title -
aging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 90
ISSN - 1945-4589
DOI - 10.18632/aging.202632
Subject(s) - bromodomain , microrna , gene silencing , ovarian cancer , cancer research , cancer , chemistry , microbiology and biotechnology , biology , biochemistry , histone , genetics , gene
Bromodomain-containing protein 4 (BRD4) overexpression promotes ovarian cancer progression, and represents an important therapeutic oncotarget. This current study identified microRNA-765 (miR-765) as a novel BRD4-targeting miRNA. We showed that miR-765 directly associated with and silenced BRD4. In primary ovarian cancer cells and established cell lines (SKOV3 and CaOV3), ectopic overexpression of miR-765 inhibited cancer cell proliferation, migration and invasion, and induced apoptosis activation. In contrast, miR-765 inhibition by its anti-sense induced BRD4 upregulation to promote ovarian cancer cell proliferation, migration and invasion. Significantly, miR-765 overexpression-induced anti-ovarian cancer cell activity was largely attenuated by restoring BRD4 expression through an UTR-null BRD4 construct. Moreover, CRISPR/Cas9-induced BRD4 knockout (KO)inhibited proliferation and activated apoptosis in ovarian cancer cells. BRD4 KO in ovarian cancer cells abolished the functional impact of miR-765. miR-765 expression levels were downregulated in human ovarian cancer tissues and cells, correlating with the upregulation of BRD4 mRNA. Collectively, BRD4 silencing by miR-765produces significant anti-ovarian cancer cell activity. miR-765 could be further tested for its anti-ovarian cancer potential.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom