
THE 3-D NUMERICAL SIMULATIONS OF THE DEPENDENCE OF THE DISK STRUCTURE FROM THE WIND CONFIGURATION IN ONE-POINT IN MICROQUASAR CYG X-1. THE CASE OF THE HIGH RESOLUTION GRID IN THE VERTICAL DIRECTION
Author(s) -
Sergey Nazarenko
Publication year - 2021
Publication title -
odessa astronomical publications
Language(s) - English
Resource type - Journals
eISSN - 2786-5215
pISSN - 1810-4215
DOI - 10.18524/1810-4215.2021.34.244295
Subject(s) - physics , radius , astrophysics , accretion (finance) , binary number , point (geometry) , point source , optics , geometry , computer science , computer security , arithmetic , mathematics
The present paper is devoted to the investigation how the disk structure is depending from the one-point wind one in microquasar CYG X-1. The results show that when the region in which the wind is absent in the vicinity of one-point has the size less or equal to 0.07 the disk radius is very small, order of 0.08 in units of orbital separation. When this size is increased to 0.115 the disk radius becomes to be of standard size to be equal to 0.22 in units of orbital separation. By the other words these results show that the disk structure is strong depending from many factors including and the donor’s wind configuration in the vicinity of one-point. This configuration is inherent to microquasars only. Indeed, since microqausars are the massive close binary systems; the donor in these systems is massive star from which the strong radiation- driving wind is blowing. On the other hand, in microquasars accretion disks are present and it means that one-point stream is also present in microqausars. It in turn means that the matter configuration in the vicinity of one-point is very complicated since the high mass loss rate donor’s wind and one-point stream must be existing in the vicinity of one-point simultaneously. This situation maybe resolved when we suppose that the central source in an accretion disk will influence on the donor’s atmosphere structure in the vicinity of one-point and in turn will be result in the break of wind in the vicinity of one-point. This finally will be means that one-point stream will be existing in one-point without a wind and it, flowing in the accretor’s Roche lobe, will be result in an accretion disk forma- tion. Here one problem is arising: what is the configuration of wind in the extended vicinity of one-point and from what the parameters this configuration is depending and haw this configuration will be results to the disk structure change. We good understand that this situation is arising in the case of microquasars only and we try to resolve this problem in the present paper.