
Light-Emitting Diode Based Photoacoustic Imaging System
Author(s) -
Ebrahim Najafzadeh,
Parastoo Farnia,
Alireza Ahmadian,
Hossein Ghadiri
Publication year - 2020
Publication title -
frontiers in biomedical technologies
Language(s) - English
Resource type - Journals
eISSN - 2345-5837
pISSN - 2345-5829
DOI - 10.18502/fbt.v7i3.4623
Subject(s) - full width at half maximum , imaging phantom , photoacoustic imaging in biomedicine , materials science , biomedical engineering , optics , diode , ultrasound , optoelectronics , radiology , medicine , physics
Purpose: A Photoacoustic Imaging (PAI) as a non-invasive hybrid imaging modality has the potential to be used in a wide range of pre-clinical and clinical applications. There are different optical excitation sources that affect the performance of PAI systems. Our goal is proving the capability of the Light-Emitting Diode (LED) based PAI system for imaging of objects in different depths. Materials and Methods: In this study the Full Width of Half Maximum (FWHM) and Contrast to Noise Ratio (CNR) of LED-based PAI system is evaluated using agar, and Poly-Vinyl Alcohol Cryogel (PVA-C) phantoms. Results: The results show that axial and lateral FWHM of the photoacoustic image in agar phantom 1%, are 0.59 and 1.16 mm, respectively. It is capable of distinguishing objects about 250 µm. Furthermore, one of the main improvements of photoacoustic images is achieved by proposed LED-based system that is a 26% higher CNR versus the ultrasound images. Conclusion: Therefore, the provided technical characteristics in this study have made designed LED-based PAI system as a suitable tool for preclinical and clinical imaging.