Open Access
A Novel Fluoride Anion Modified Gelatin Nanogel System
Author(s) -
Daocheng Wu,
Mingxi Wan
Publication year - 2008
Publication title -
journal of pharmacy and pharmaceutical sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.497
H-Index - 78
ISSN - 1482-1826
DOI - 10.18433/j3988j
Subject(s) - sonication , nanogel , gelatin , particle size , fluoride , high performance liquid chromatography , chemistry , drug delivery , chromatography , nanoparticle , nuclear chemistry , materials science , biomedical engineering , nanotechnology , inorganic chemistry , organic chemistry , medicine
Purpose. Controlled drug release, especially tumor-targeted drug release, remains a great challenge. Here, we prepare a novel fluoride anion-modified gelatin nanogel system and investigate its characteristics of ultrasound-triggered drug release. Methods. Adriamycin gelatin nanogel modified with fluoride anion (ADM-GNMF) was prepared by a modified co-precipitation method with fluoride anion and sodium sulfate. The loading and encapsulation efficiency of the anti-neoplastic agent adriamycin (ADM) were measured by high performance liquid chromatography (HPLC). The size and shape of ADM-GNMF were determined by electron microscopy and photo-correlation spectroscopy. The size distribution and drug release efficiency of ADM-GNMF, before and after sonication, were measured by two designed measuring devices that consisted of either a submicron particle size analyzer and an ultrasound generator as well as an ultrasound generator, automatic sampler, and HPLC. Results. The ADM-GNMF was stable in solution with an average diameter of 46±12 nm; the encapsulation and loading efficiency of adriamycin were 87.2% and 6.38%, respectively. The ultrasound-triggered drug release and size change were most efficient at a frequency of 20 kHz, power density of 0.4w/cm2, and a 1~2 min duration. Under this ultrasound-triggered condition, 51.5% of drug in ADM-GNMF was released within 1~2 min, while the size of ADM-GNMF changed from 46 ± 12 nm to 1212 ± 35 nm within 1~2 min of sonication and restored to its previous size in 2~3 min after the ultrasound stopped. In contrast, 8.2% of drug in ADM-GNMF was released within 2~3 min without sonication, and only negligible size changes were found. Conclusions. The ADM-GNMF system efficiently released the encompassed drug in response to ultrasound, offering a novel and promising controlled drug release system for targeted therapy for cancer or other diseases.