
Time-resolved Velocity Estimation from Inflow Pressure Measurements in a Subsonic Jet Using Machine-Learning Methods
Author(s) -
Songqi Li,
Wenyan Li,
Lawrence Ukeiley
Publication year - 2021
Publication title -
international symposium on particle image velocimetry.
Language(s) - English
Resource type - Journals
ISSN - 2769-7576
DOI - 10.18409/ispiv.v1i1.73
Subject(s) - jet (fluid) , mach number , microphone , nozzle , acoustics , inflow , anechoic chamber , particle image velocimetry , physics , freestream , pressure measurement , planar , microphone array , mechanics , optics , sound pressure , meteorology , computer science , reynolds number , computer graphics (images) , turbulence , thermodynamics
The goal of this study is to estimate aspects of the time-resolved (TR) velocity field that is associated with pressure fluctuations measured in a subsonic jet using machine learning (ML) approaches. The experiments were conducted in the Anechoic Jet Test Facility at the University of Florida using a round converging nozzle operated at at a Mach number of 0.3 and ReD = 3.8 × 105. Planar PIV was utilized to record nonTR, 2D velocity snapshots on the streamwise plane. A B&K 4138 1/8” microphone and a GRAS 46DD 1/8” microphone were employed to measure inflow pressure fluctuations synchronously with the PIV. Both microphones were equipped with aerodynamically-shaped nosecones and were placed on the upper and lower jet liplines. The nosecone tips were streamwisely aligned and were placed just downstream of the PIV window (see Figure 1(a)). Pressure signals were recorded synchronously with PIV, but at different sampling rates, 80 kHz and 12 Hz, respectively. A total of 8000 PIV snapshots were acquired in the experiment.