Open Access
Circ_FOXO3 regulates KLF6 through sponge adsorption of miR-122-5p to repress H2O2-induced HBVSMC proliferation, thus promoting IA development in vitro model
Author(s) -
Pei Dong Yue,
Ya Nan Lu,
Lei Zhang,
Fei Zheng
Publication year - 2022
Publication title -
acta biochimica polonica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.452
H-Index - 78
eISSN - 1734-154X
pISSN - 0001-527X
DOI - 10.18388/abp.2020_6021
Subject(s) - foxo3 , in vitro , microrna , apoptosis , transfection , cancer research , chemistry , biology , gene , protein kinase b , genetics
The phenotypic transformation of human brain vascular smooth muscle cells (HBVSMC) is widely involved in the appearance and progression of intracranial aneurysms (IA). Aneurysm (IA) Circular RNA circ_FOXO3 functions pivotally in vascular diseases and tumors, but its regulatory role as well as its molecular mechanism in IA is still uncertain. This research was to explore how circ_FOXO3 works and its mechanism in vitro model of HBVSMC IA induced by H2O2.