
MicroRNA-15 suppresses viability, migration and invasion of the human MG-63 osteosarcoma cells via inhibition of cyclin dependent kinase 6 (CDK6)
Author(s) -
Shen Zhao,
Chen Wang,
Bin Liu,
Jieli Du,
Zhiqiang Li,
Jitang Zhao
Publication year - 2022
Publication title -
acta biochimica polonica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.452
H-Index - 78
eISSN - 1734-154X
pISSN - 0001-527X
DOI - 10.18388/abp.2020_6001
Subject(s) - osteosarcoma , cyclin dependent kinase 6 , cancer research , cyclin d1 , gene silencing , downregulation and upregulation , microrna , chemistry , cell growth , biology , apoptosis , cell cycle , biochemistry , gene
MicroRNA-15a-3p (miR-15) acts as tumor-suppressor in different human cancers including osteosarcoma. Nonetheless, the molecular function of miR-15 in osteosarcoma via suppression of cyclin dependent kinase 6 (CDK6) is yet to be studied. The results showed significant downregulation of miR-15 in osteosarcoma tissues and cell lines. Overexpression of miR-15 inhibited the proliferation and colony formation of the MG-63 osteosarcoma cells via induction of apoptosis. Moreover, miR-15 inhibited the migration and invasion of MG-63 osteosarcoma cells. The tumor-suppressive functional role of miR-15 was shown to be exerted via suppression of CDK6. The expression of CDK6 was upregulated in osteosarcoma and its silencing could exert growth inhibitory effects on human osteosarcoma cells. However, overexpression of CDK6 could nullify the tumor-suppressive effects of miR-15 on the MG-63 osteosarcoma cells. Taken together, miR-15 negatively regulates growth, migration and invasion of osteosarcoma cells by targeting CDK6 at post-transcriptional level. These findings suggest the therapeutic potential of miR-15/CDK6 in human osteosarcoma.