
Comparison of photodynamic efficiency of cholesterol, selected cholesterol esters, metabolites and oxidation products on lipid peroxidation processes
Author(s) -
Monika Burakowska,
Tadeusz Sarna,
Anna Pawlak
Publication year - 2021
Publication title -
acta biochimica polonica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.452
H-Index - 78
eISSN - 1734-154X
pISSN - 0001-527X
DOI - 10.18388/abp.2020_5994
Subject(s) - chemistry , singlet oxygen , cholesterol , lipid peroxidation , membrane , liposome , oxygen , photochemistry , membrane fluidity , lipid oxidation , biochemistry , organic chemistry , oxidative stress , antioxidant
Cholesterol (Ch) is one of the most important components of biological membranes, which has a significant impact on their biophysical properties. As a key component of lipid membranes, Ch along with other unsaturated lipids present in a biological membrane undergoes oxidation reaction during oxidative stress. Cholesterol oxidation products, cholesteryl esters and metabolites are also localise in lipid membranes, where they may modify membrane properties. In this work the impact of cholesterol, selected cholesteryl esters, cholesterol oxidation products and metabolites on lipid peroxidation induced by photodynamic action has been studied using EPR oximetry and direct detection of singlet oxygen phosphorescence at 1270 nm. The obtained rate constants values of interaction of selected lipids and sterols with singlet oxygen indicate that the tested compounds are not efficient singlet oxygen quenchers. Nevertheless, the presence of sterols modifies to different extend the oxygen photoconsumption rate in peroxidisable liposomes.