z-logo
open-access-imgOpen Access
Histone demethylase KDM5A enhances cell proliferation, induces EMT in lung adenocarcinoma cells, and have a strong causal association with paclitaxel resistance
Author(s) -
Lidong Xu,
Hong Gyun Wu,
Xun Hu
Publication year - 2021
Publication title -
acta biochimica polonica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.452
H-Index - 78
eISSN - 1734-154X
pISSN - 0001-527X
DOI - 10.18388/abp.2020_5437
Subject(s) - a549 cell , adenocarcinoma , paclitaxel , cancer research , lung cancer , demethylase , cell culture , epithelial–mesenchymal transition , vimentin , chemistry , biology , metastasis , microbiology and biotechnology , cancer , medicine , immunology , pathology , histone , immunohistochemistry , biochemistry , gene , genetics
Recent reports suggest that histone demethylase KDM5A emerges as a new player in the development of drug resistance and thus increases the challenges of chemotherapy. Here, we explore the role of KDM5A in cell proliferation, epithelial-mesenchymal transition (EMT)and its causal association with paclitaxel resistance in lung adenocarcinoma. Paclitaxel-resistant lung adenocarcinoma PTX-Calu-3 cells showed significantly higher IC50 value (7±0.176 µM) upon paclitaxel treatment than lung adenocarcinoma SK-LI-1 (3.6±0.005 nM), Calu-3 (4.3±0.015 nM), and A549 (4.5±0.106 nM) cells. We found that expression of KDM5A and P-glycoprotein (P-gp), which plays a critical role in the development of paclitaxel resistance, were significantly higher in PTX-Calu-3 cells compared to SK-LI-1, Calu-3, and A549 cells.. We observed a significant increase in the expression of mesenchymal markers N-cadherin and vimentin, and a concomitant decrease in expression of E-cadherin and α-catenin in PTX-Calu-3 compared to SK-LI-1, Calu-3, and A549 lung cancer cell lines. Transwell Boyden chamber and wound healing assays further demonstrated that a significantly higher number of PTX-Calu-3 cells were invasive and motile compared to SK-LI-1, Calu-3, and A549 cells, thus supporting the role of KDM5A in metastasis-associated processes. Additionally, a significantly higher expression of KDM5A was observed in lung adenocarcinoma patients’ samples compared with adjacent normal tissues as well as in PTX-Calu-3 cells compared toSK-LI-1, Calu-3, and A549 cells, as shown both with histochemistry and real time-polymerase chain reaction (RT-PCR). In summary, these results suggest that KDM5A plays a key role in lung adenocarcinoma by promoting proliferation, EMT, and drug resistance to paclitaxel treatment.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here