Open Access
A search for the in trans role of GraL, an Escherichia coli small RNA*
Author(s) -
Maciej Dylewski,
Monika Ćwiklińska,
Katarzyna Potrykus
Publication year - 2018
Publication title -
acta biochimica polonica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.452
H-Index - 78
eISSN - 1734-154X
pISSN - 0001-527X
DOI - 10.18388/abp.2017_2562
Subject(s) - escherichia coli , messenger rna , biology , in vitro , in vivo , rna , gene , transfer rna , lac operon , enterobacteriaceae , strain (injury) , nude mouse , microbiology and biotechnology , genetics , anatomy
Small RNA are very important post-transcriptional regulators in both, bacteria and eukaryotes. One of such sRNA is GraL, encoded in the greA leader region and conserved among enteric bacteria. Here, we conducted a bioinformatics search for GraL’s targets in trans and validated our findings in vivo by constructing fusions of probable targets with lacZ and measuring their activity when GraL was overexpressed. Only one target's activity (nudE) decreased under those conditions and was thus selected for further analysis. In the absence of GraL and greA, the nudE::lacZ fusion's β-galactosidase activity was increased. However, a similar effect was also visible in the strain deleted only for greA. Furthermore, overproduction of GreA alone increased the nudE::lacZ fusion’s activity as well. This suggests existence of complex regulatory loop-like interactions between GreA, GraL and nudE mRNA. To further dissect this relationship, we performed in vitro EMSA experiments employing GraL and nudE mRNA. However, stable GraL-nudE complexes were not detected, even though the detectable amount of unbound GraL decreased as increasing amounts of nudE mRNA were added. Interestingly, GraL is being bound by Hfq, but nudE easily displaces it. We also conducted a search for genes that are synthetic lethal when deleted along with GraL. This revealed 40 genes that are rendered essential by GraL deletion, however, they are involved in many different cellular processes and no clear correlation was found. The obtained data suggest that GraL's mechanism of action is non-canonical, unique and requires further research.