z-logo
open-access-imgOpen Access
Unusual nucleoside triphosphate donors for nucleoside kinases: 3'-deoxyadenosine-2'-triphosphate and 2'-deoxyadenosine-3'-triphosphate.
Author(s) -
Krzysztof Krawiec,
Borys Kierdaszuk,
Еle. Kalinichenko,
Igor A. Mikhailopulo,
David Shugar
Publication year - 1998
Publication title -
acta biochimica polonica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.452
H-Index - 78
eISSN - 1734-154X
pISSN - 0001-527X
DOI - 10.18388/abp.1998_4290
Subject(s) - adenosine triphosphate , deoxyadenosine , nucleoside , kinase , nucleoside triphosphate , chemistry , biochemistry , deoxycytidine kinase , nucleoside diphosphate kinase , phosphate , phosphorylation , enzyme , nucleotide , biology , deoxycytidine , genetics , chemotherapy , gemcitabine , gene
Two non-conventional analogues of ATP, 3'-deoxyadenosine-2'-triphosphate (3'-d-2'-ATP) and 2'-deoxyadenosine-3'-triphosphate (2'-d-3'-ATP), the syntheses of which are described, were examined as potential phosphate donors for the nucleoside kinases: 2'-deoxycytidine kinase (dCK), cytosolic thymidine kinase (TK1) and mitochondrial thymidine kinase (TK2). The reactions were monitored by means of a mixture of [gamma-32P]ATP and cold analogue, and/or with the use of 3H-labelled acceptors and cold donor. With dCK, using equimolar mixtures of ATP with each analogue, and dC as acceptor, phosphate transfer from 3'-d-2'-ATP and 2'-d-3'-ATP amounted to 34% and 14%, respectively. With each analogue used alone (each at concentration of 100 microM), phosphate transfer from 3'-d-2'-ATP was 55% that from ATP, and from 2'-d-3'-ATP 16%. With human TK2, and equimolar mixtures of [gamma-32P]ATP with each of the analogues, and 1 microM dT as acceptor, there was no detectable transfer from either analogue. But, when each analogue was used alone, phosphate transfer attained 11% and 5%, respectively, that for ATP alone. With the low affinity form of human TK1, and dT as acceptor, only low phosphate transfer occurred with either analogue used alone. Both compounds exhibited Michaelis-Menten kinetics (with significantly lower Vmax than ATP), while ATP exhibited cooperative kinetics with all three kinases.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here