z-logo
open-access-imgOpen Access
Synthesis and Solution Properties of Hydrophobically Modified Polysaccharides
Author(s) -
Vitaliy V. Khutoryanskiy
Publication year - 2017
Publication title -
eurasian chemico-technological journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.227
H-Index - 9
eISSN - 2522-4867
pISSN - 1562-3920
DOI - 10.18321/ectj621
Subject(s) - chemistry , pullulan , polymer , aqueous solution , amphiphile , polysaccharide , cationic polymerization , micelle , hydrophobe , hydrophobic effect , polyelectrolyte , organic chemistry , chemical engineering , polymer chemistry , copolymer , biochemistry , engineering
Hydrophobically modified polymers are amphiphilic macromolecules mainly constituted of a hydrophilic backbone and hydrophobic side groups. In aqueous solutions these polymers undergo inter- or intra-molecular hydrophobic association, which results in unusual properties useful for a number of practical applications. The areas of application of these polymers include associative thickeners for enhanced oil recovery, pharmaceuticals, personal care formulations, coatings, adhesives, surfactants, emulsifiers, etc. This review presents the analysis of a literature data on preparation of hydrophobically modified polysaccharides (HMP) and their properties in aqueous solutions. Some of the synthetic methods used for hydrophobic modification of non-ionic (cellulose ethers, starch, dextran, pullulan, etc.), anionic (carboxymethylcellulose, hyaluronic acid, pectic acid, alginic acid, heparin) and cationic  olysaccharides (chitosan) are presented. The methodology used for the investigation of solution properties of hydrophobically modified polysaccharides is discussed. Special attention is paid to aggregate and micelle formation in solutions of hydrophobically modified polysaccharides, solubilization of hydrophobic compounds, their rheological properties and surface activity. The effects of polymer architecture (level of hydrophobic substitution, nature of hydrophobic groups, molecular weight of a hydrophilic backbone, etc.), concentration, temperature, presence of inorganic salts and organic solvents on solution properties of hydrophobically modified polysaccharides are discussed. Some applications of hydrophobically modified polysaccharides are briefly highlighted.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here