
Bearing Fault Classification using Empirical Mode Decomposition and Machine Learning Approach
Author(s) -
G. Manjunatha,
H. C. Chittappa
Publication year - 2022
Publication title -
journal of mines, metals and fuels
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.125
H-Index - 11
ISSN - 0022-2755
DOI - 10.18311/jmmf/2022/30060
Subject(s) - hilbert–huang transform , bearing (navigation) , rolling element bearing , fault (geology) , feature extraction , artificial intelligence , vibration , pattern recognition (psychology) , computer science , mode (computer interface) , feature selection , classifier (uml) , empirical research , engineering , computer vision , mathematics , acoustics , statistics , physics , filter (signal processing) , seismology , geology , operating system