
Improvement of fretting wear resistance of blade root made of polymer composite material
Author(s) -
T. D. Karimbayev,
D. V. Afanasiev,
Dmitrii Viktorovich Matyukhin,
М. А. Орлов
Publication year - 2019
Publication title -
vestnik samarskogo universiteta. aèrokosmičeskaâ tehnika, tehnologii i mašinostroenie
Language(s) - English
Resource type - Journals
eISSN - 2541-7533
pISSN - 2542-0453
DOI - 10.18287/2541-7533-2019-18-4-64-75
Subject(s) - composite number , fretting , materials science , blade (archaeology) , thread (computing) , composite material , wear resistance , structural engineering , turbine blade , mechanical engineering , engineering , turbine
Polymer composite materials (PCM) are being increasingly used in aircraft engine industry. Development of PCM fan blade manufacturing technology that meets all the necessary strength requirements is an important task in creating Russian-made latest-generation engines. One of the problems to be faced is the wear of the blade root caused by cyclic micro-displacements in the interlock under the action of external forces. There are several engineering solutions to control surface wear of blade roots made of PCM that can basically be divided into three groups: manufacture of metal roots and the use of known methods of metal fretting prevention, use of replaceable special inserts placed between the contact surfaces of the root and the disk slot, application of elastic and damping elements. In this paper, we consider another method of controlling wear, the principal feature of which is stitching the blade pre-form with aramid thread that forms a layer with higher wear resistance on the root surface. In order to verify the efficiency of the proposed approach, model blades were made and tests were carried out on an electrodynamic shaker.