
Analysis of SamSat-218D nanosatelite motion acording to trajectory measurements
Author(s) -
И. В. Белоконов,
И. А. Тимбай,
П. Н. Николаев,
U. M. Orazbaeva
Publication year - 2019
Publication title -
vestnik samarskogo universiteta. aèrokosmičeskaâ tehnika, tehnologii i mašinostroenie
Language(s) - English
Resource type - Journals
eISSN - 2541-7533
pISSN - 2542-0453
DOI - 10.18287/2541-7533-2019-18-4-18-28
Subject(s) - moment of inertia , trajectory , physics , center of mass (relativistic) , aerodynamics , angular momentum , trajectory of a projectile , acceleration , angular velocity , rotation (mathematics) , mechanics , computational physics , classical mechanics , geometry , mathematics , astronomy , energy–momentum relation
The motion of the SamSat-218D nanosatellite is analyzed by trajectory measurements. Special features of nanosatellite behavior in low orbits were experimentally confirmed. These features are due to both the influence of the atmosphere and the nanosatellites’ inherent mass-inertia characteristics: the orbital lifetime of nanosatellites is shorter, whereas angular acceleration generated by the aerodynamic moment couple is much higher than that of satellites with large sizes and masses. Variation of the ballistic coefficient in time is estimated from known trajectory measurements and information on the average density of the atmosphere at the points of trajectory measurements. The ballistic coefficient of the SamSat-218D nanosatellite having the shape of a rectangular parallelepiped depends on the spatial angle of attack and the angle of proper rotation. The ratio of the maximum value of the ballistic coefficient to the minimum value is 4.75. This made it possible to evaluate the nature of possible motion relative to the nanosatellite center of mass by the behavior of the ballistic coefficient. The most probable motion relative to the center of mass of the SamSat-218D nanosatellite is the transient motion between different equilibrium positions, due to commensurate aerodynamic and gravitational moments and insignificant angular velocities.