z-logo
open-access-imgOpen Access
REPRESENTATION OF PARSEVAL FRAMES IN HILBERT SPACES
Author(s) -
Igor Sergeevich Ryabtsov
Publication year - 2011
Publication title -
vestnik samarskogo universiteta. estestvennonaučnaâ seriâ
Language(s) - English
Resource type - Journals
eISSN - 2712-8954
pISSN - 2541-7525
DOI - 10.18287/2541-7525-2011-17-5-60-70
Subject(s) - parseval's theorem , orthonormal basis , mathematics , simple (philosophy) , representation (politics) , hilbert space , dimension (graph theory) , pure mathematics , basis (linear algebra) , algebra over a field , mathematical analysis , fourier transform , fourier analysis , geometry , physics , politics , political science , fractional fourier transform , law , philosophy , epistemology , quantum mechanics
In this paper we introduce two new classes of Parseval frames in arbitraryHilbert spaces of finite or infinite dimension: simple and composite Parsevalframes. Theorems of representation of composite Parseval frames by summationof simple ones are proved. Few classes of simple frames are described: orthonormal basis, equiangular Parseval frames and some other examples.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here