
Extrinsic calibration of stereo camera and three-dimensional laser scanner
Author(s) -
A. A. Abramenko
Publication year - 2019
Publication title -
kompʹûternaâ optika
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.491
H-Index - 29
eISSN - 2412-6179
pISSN - 0134-2452
DOI - 10.18287/2412-6179-2019-43-2-220-230
Subject(s) - calibration , computer vision , rectangle , artificial intelligence , lidar , computer science , camera auto calibration , camera resectioning , coordinate system , laser scanning , point (geometry) , laser , remote sensing , optics , mathematics , geography , physics , geometry , statistics
The paper describes an approach that allows solving the problem of extrinsic calibration of a multi-beam lidar and a stereo camera. The approach does not impose any restrictions on the place in which calibration should be performed. Calibration is performed using a calibration board, which is a flat rectangle with special markers. Three-dimensional correspondences are used for calibration. First, a search for the three-dimensional coordinates of the corner points of the calibration board in the coordinate systems of the stereo pair cameras as well as in the coordinate system of the lidar is made. Next, using the optimization methods, calibration parameters are calculated. The results of a series of virtual and real experiments show that the algorithm allows the calibration to be performed with an accuracy comparable to that of sensors. The proposed approach allows one to improve the calibration accuracy due to the simultaneous use of information from two cameras of the stereo pair and is suitable for lidars with both the low and high point density.