
An Improved Medical Image Watermarking Technique Based on Weber’s Law Descriptors
Author(s) -
KVSV Trinadh Reddy,
Sreedhar Reddy
Publication year - 2021
Publication title -
traitement du signal/ts. traitement du signal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.279
H-Index - 11
eISSN - 1958-5608
pISSN - 0765-0019
DOI - 10.18280/ts.380607
Subject(s) - digital watermarking , discrete cosine transform , watermark , robustness (evolution) , embedding , chaotic , block (permutation group theory) , artificial intelligence , computer vision , computer science , image (mathematics) , pixel , algorithm , pattern recognition (psychology) , mathematics , biochemistry , chemistry , geometry , gene
In distributed m-health communication, it is a major challenge to develop an efficient blind watermarking method to protect the confidential medical data of patients. This paper proposes an efficient blind watermarking for medical images, which boasts a very high embedding capacity, a good robustness, and a strong imperceptibility. Three techniques, namely, discrete cosine transform (DCT), Weber’s descriptors (WDs), and Arnold chaotic map, were integrated to our method. Specifically, the Arnold chaotic map was used to scramble the watermark image. Then, the medical image was partitioned into non-over lapping blocks, and each block was subjected to DCT. After that, the scrambled watermark image data were embedded in the middle-band DCT coefficients of each block, such that two bits were embedded in each block. Simulation results show that the proposed watermarking method provides better imperceptibility, robustness, and computational complexity results with higher embedding capacity than the contrastive method.