
Image Based Classification of Rumor Information from the Social Network Platform
Author(s) -
V. Sreenivasulu,
Mohammed Abdul Wajeed
Publication year - 2021
Publication title -
traitement du signal/ts. traitement du signal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.279
H-Index - 11
eISSN - 1958-5608
pISSN - 0765-0019
DOI - 10.18280/ts.380516
Subject(s) - computer science , rumor , the internet , convolutional neural network , social network (sociolinguistics) , world wide web , classifier (uml) , social media , information retrieval , computer security , artificial intelligence , public relations , political science
Spam emails based on images readily evade text-based spam email filters. More and more spammers are adopting the technology. The essence of email is necessary in order to recognize image content. Web-based social networking is a method of communication between the information owner and end users for online exchanges that use social network data in the form of images and text. Nowadays, information is passed on to users in shorter time using social networks, and the spread of fraudulent material on social networks has become a major issue. It is critical to assess and decide which features the filters require to combat spammers. Spammers also insert text into photographs, causing text filters to fail. The detection of visual garbage material has become a hotspot study on spam filters on the Internet. The suggested approach includes a supplementary detection engine that uses visuals as well as text input. This paper proposed a system for the assessment of information, the detection of information on fraud-based mails and the avoidance of distribution to end users for the purpose of enhancing data protection and preventing safety problems. The proposed model utilizes Machine Learning and Convolutional Neural Network (CNN) methods to recognize and prevent fraud information being transmitted to end users.