
Challenges and Limitations in Human Action Recognition on Unmanned Aerial Vehicles: A Comprehensive Survey
Author(s) -
Nashwan Adnan Othman,
İlhan Aydın
Publication year - 2021
Publication title -
traitement du signal/ts. traitement du signal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.279
H-Index - 11
eISSN - 1958-5608
pISSN - 0765-0019
DOI - 10.18280/ts.380515
Subject(s) - drone , action (physics) , benchmark (surveying) , computer science , artificial intelligence , action recognition , human–computer interaction , computer security , geography , cartography , genetics , physics , quantum mechanics , biology , class (philosophy)
An Unmanned Aerial Vehicle (UAV), commonly called a drone, is an aircraft without a human pilot aboard. Making UAVs that can accurately discover individuals on the ground is very important for various applications, such as people searches, and surveillance. UAV integration in smart cities is challenging, however, because of problems and concerns such as privacy, safety, and ethical/legal use. Human action recognition-based UAVs can utilize modern technologies. Thus, it is essential for future development of the aforementioned applications. UAV-based human activity recognition is the procedure of classifying photo sequences with action labels. This paper offers a comprehensive study of UAV-based human action recognition techniques. Furthermore, we conduct empirical research studies to assess several factors that might influence the efficiency of human detection and action recognition techniques in UAVs. Benchmark datasets commonly utilized for UAV-based human action recognition are briefly explained. Our findings reveal that the existing human action recognition innovations can identify human actions on UAVs with some limitations in range, altitudes, long-distance, and a large angle of depression.