z-logo
open-access-imgOpen Access
DenseResUNet: An Architecture to Assess Water-Stressed Sugarcane Crops from Sentinel-2 Satellite Imagery
Author(s) -
Shyamal Virnodkar,
Vinod Pachghare,
V. C. Patil,
Sunil Kumar Jha
Publication year - 2021
Publication title -
traitement du signal/ts. traitement du signal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.279
H-Index - 11
eISSN - 1958-5608
pISSN - 0765-0019
DOI - 10.18280/ts.380424
Subject(s) - remote sensing , segmentation , computer science , block (permutation group theory) , agricultural engineering , environmental science , vegetation (pathology) , artificial intelligence , mathematics , engineering , geology , medicine , geometry , pathology
A single most immense abiotic stress globally affecting the productivity of all the crops is water stress. Hence, timely and accurate detection of the water-stressed crops is a necessary task for high productivity. Agricultural crop production can be managed and enhanced by spatial and temporal evaluation of water-stressed crops through remotely sensed data. However, detecting water-stressed crops from remote sensing images is a challenging task as various factors impacting spectral bands, vegetation indices (VIs) at the canopy and landscape scales, as well as the fact that the water stress detection threshold is crop-specific, there has yet to be substantial agreement on their usage as a pre-visual signal of water stress. This research takes the benefits of freely available remote sensing data and convolutional neural networks to perform semantic segmentation of water-stressed sugarcane crops. Here an architecture ‘DenseResUNet’ is proposed for water-stressed sugarcane crops using segmentation based on encoder-decoder approach. The novelty of the proposed approach lies in the replacement of classical convolution operation in the UNet with the dense block. The layers of a dense block are residual modules with a dense connection. The proposed model achieved 61.91% mIoU, and 80.53% accuracy on segmenting the water-stressed sugarcane fields. This study compares the proposed architecture with the UNet, ResUNet, and DenseUNet models achieving mIoU of 32.20%, 58.34%, and 53.15%, respectively. The results of this study reveal that the model has the potential to identify water-stressed crops from remotely sensed data through deep learning techniques.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here