
A Deep Learning-Based Approach in Classification and Validation of Tomato Leaf Disease
Author(s) -
Shivali Amit Wagle,
R Harikrishnan
Publication year - 2021
Publication title -
traitement du signal/ts. traitement du signal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.279
H-Index - 11
eISSN - 1958-5608
pISSN - 0765-0019
DOI - 10.18280/ts.380317
Subject(s) - artificial intelligence , transfer of learning , deep learning , machine learning , identification (biology) , pattern recognition (psychology) , plant disease , class (philosophy) , contextual image classification , computer science , botany , biology , microbiology and biotechnology , image (mathematics)
Deep learning models are playing a vital role in classification goals that can have propitious results. In the past few years, many models are being used for this purpose of plant disease classification. This work has assisted in the process of identification and classification of a plant leaf disease. In this paper, the Tomato plant leaf images are taken from the PlantVillage Database consisting of one healthy and eight disease classes. The disease classes are selected based on the occurrence of the disease in India. The deep learning models of AlexNet, VGG16, GoogLeNet, MobileNetv2, and SqueezeNet are used in this work for the classification of Tomato plant leaf as healthy or diseased and further which disease class it belongs to. The models used here are all the pre-trained models, so transfer learning is used to fit the total number of classes that need to be classified by the network model. VGG16 model outperformed giving 99.17% accuracy compared to AlexNet, GoogLeNet, MobileNetv2, and SqueezeNet. The work concludes with the model’s validation results on the set of images captured at Krishi Vigyan Kendra Narayangaon (KVKN), India.