
Hybrid CNN Based Computer-Aided Diagnosis System for Choroidal Neovascularization, Diabetic Macular Edema, Drusen Disease Detection from OCT Images
Author(s) -
Seda Arslan Tuncer,
Ahmet Çınar,
Murat Fırat
Publication year - 2021
Publication title -
traitement du signal/ts. traitement du signal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.279
H-Index - 11
eISSN - 1958-5608
pISSN - 0765-0019
DOI - 10.18280/ts.380314
Subject(s) - diabetic retinopathy , drusen , artificial intelligence , support vector machine , convolutional neural network , computer science , optical coherence tomography , macular degeneration , feature extraction , choroidal neovascularization , ophthalmology , computer aided diagnosis , computer vision , medicine , pattern recognition (psychology) , diabetes mellitus , endocrinology
In the treatment of eye diseases, optical coherence tomography (OCT) is a medical imaging method that displays biological tissue layers by taking high resolution tomographic sections at the micron level. It has an important role in the diagnosis and follow-up of many diseases such as Choroidal Neovascularization (CNV), Diabetic Macular Edema (DME), age-related macular degeneration (AMD), Diabetic Retinopathy, Central Serous Retinopathy, Epiretinal Membrane, and Macular Hole. Computer-Aided Diagnostic (CAD) tools are needed in early detection and treatment monitoring of such eye diseases. In this paper, a hybrid Convolutional Neural Networks-based CAD system, which can classify Diabetic Macular Edema (DME), Drusen Choroidal Neovascularization (CNV), and normal OCT images, is proposed. The proposed system is CNN-SVM (Convolutional Neural Networks – Support Vector Machine) model and doesn’t require any additional extraction of feature or noise filtering on OCT images. A total of 968 OCT images is classified in pre-trained CNN methods with Alexnet, Resnet18 and Googlenet. Accuracy is achieved with highest Googlenet 97.4%. To examine the performance of the proposed CAD system, the CNN-SVM method achieves 98.96% with the highest accuracy hybrid Alexnet-SVM model, which is implemented with Alexnet-SVM, Resnet18-SVM and Googlenet-SVM models.