
Implementation of Artifact Removal Algorithms in Gait Signals for Diagnosis of Parkinson Disease
Author(s) -
Erdoğan Özel,
Ramazan Tekin,
Yılmaz Kaya
Publication year - 2021
Publication title -
traitement du signal/ts. traitement du signal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.279
H-Index - 11
eISSN - 1958-5608
pISSN - 0765-0019
DOI - 10.18280/ts.380306
Subject(s) - parkinson's disease , artifact (error) , gait , noise (video) , pattern recognition (psychology) , logistic regression , computer science , artificial intelligence , physical medicine and rehabilitation , algorithm , mathematics , disease , statistics , medicine , pathology , image (mathematics)
Parkinson's disease (PD) is a neurological disease that progresses further over time. Individuals suffering from this condition have a deficiency of dopamine, a neurotransmitter found in the brain's nerve cells that is critical for coordinating body movement. In this study, a new approach is proposed for the diagnosis of PD. Common Average Reference (CAR), Median Common Average Reference (MCAR), and Weighted Common Average Reference (WCAR) methods were primarily utilized to eliminate noise from the multichannel recorded walking signals in the resulting PhysioNet dataset. Statistical features were obtained from the clean walking signals following the Local Binary Pattern (LBP) transformation application. Logistic Regression (LR), Random Forest (RF), and K-nearest neighbor (Knn) methods were utilized in the classification stage. A high success rate with a value of 92.96% was observed with Knn. It was also determined that signals on which foot and the signals obtained from which point of the sole of the foot were effective in PD diagnosis in the study. In light of the findings, it was observed that noise reduction methods increased the success rate of PD diagnosis.