
Influence of Nanofiller Dispersion on Electrical and Mechanical Properties of Epoxy Alumina Nanocomposites
Author(s) -
. Neelmani,
R. Sarathi,
Hisayuki Suematsu,
Toshikatsu Tanaka
Publication year - 2021
Publication title -
revue des composites et des matériaux avancés
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.153
H-Index - 5
eISSN - 1958-5799
pISSN - 1169-7954
DOI - 10.18280/rcma.310405
Subject(s) - materials science , epoxy , composite material , nanocomposite , ultimate tensile strength , dispersion (optics) , nanoparticle , nanotechnology , physics , optics
The electrical and mechanical properties of the epoxy alumina nanocomposites depend on the uniform dispersion of the nanofiller in the epoxy matrix. Epoxy alumina nanocomposites were prepared using 1, 3, and 5 wt% of alumina nanofiller, and electrical and mechanical properties were analyzed using experimental and modelling studies. Water droplet initiated corona inception voltage (CIV) was identified using fluorescence fiber technique and by Ultra High Frequency (UHF) technique, under AC and DC voltages. The CIV formed due to water droplet have reduced drastically with increase in number of droplets and fluorescent fiber technique found to be more sensitive to identify water droplet initiated discharges. A micro mechanical model was proposed to analyse the combined effect of the interphase and agglomeration properties of the alumina nanoparticles on the tensile strength of epoxy alumina nanocomposites. Variation in ϕagg, Eagg, and E were analysed by adopting the non-parametric distribution of alumina nanoparticles and Young’s modulus increased with the increment in the alumina nanofiller dispersion level. The presence of aggregated particles exhibits a negative effect on the tensile properties of nanocomposites.