z-logo
open-access-imgOpen Access
Simple Semi-analytical Solutions Using the Perturbation Method for Gradually Varied Flow Profile in Triangular Channels
Author(s) -
Hamed Reza Zarif Sanayei,
Fatemeh Nasiri
Publication year - 2020
Publication title -
mathematical modelling and engineering problems/mathematical modelling of engineering problems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.26
H-Index - 11
eISSN - 2369-0747
pISSN - 2369-0739
DOI - 10.18280/mmep.070417
Subject(s) - mathematics , nonlinear system , ode , mathematical analysis , perturbation (astronomy) , ordinary differential equation , channel (broadcasting) , open channel flow , flow (mathematics) , differential equation , computer science , geometry , physics , computer network , quantum mechanics
In hydraulic engineering, the steady non-uniform flow in a channel with the gradual changes at the water surface level is introduced as the Gradually Varied Flow (GVF). For the design of open channels, it is necessary to calculate the GVF profile along the channel flow. The GVF profile is described by a nonlinear Ordinary Differential Equation (ODE). Because this equation is strongly nonlinear, providing new analytical and/or semi-analytical solutions for this equation without any simplifications and/or linearizations would be necessary and helpful. In this research, the Perturbation Method (PM) is proposed to present a semi-analytical solution for solving the GVF equation in the prismatic triangular channel. A total of two cases are studied in this paper. In case 1, the Manning equation and in case 2, the Chezy equation are applied as the resistance equations. The GVF profiles in the two cases are compared with the Finite Difference Method (FDM) profiles. Also, the effect of the summation truncation in the PM is studied for these cases. The results show that by increasing the terms approximation in the PM, the GVF profile converges to the FDM profile. A reference solution for efficiency assessment of numerical techniques can be provided by presented semi-analytical solutions in this paper. Furthermore, the proposed method in this paper can be used as a new idea in providing semi-analytical solutions to other open channel works.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here