z-logo
open-access-imgOpen Access
A Single-Stage Three Phase CT-Type MLI for Grid Integration and for Supplying Critical Loads
Author(s) -
Sumit Raj,
Rajib Kumar Mandal,
Mala De
Publication year - 2021
Publication title -
journal européen des systèmes automatisés/journal européen des systèmes automaitsés
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.16
H-Index - 20
eISSN - 2116-7087
pISSN - 1269-6935
DOI - 10.18280/jesa.540506
Subject(s) - renewable energy , total harmonic distortion , electrical engineering , grid , automotive engineering , computer science , voltage , engineering , electric power system , power (physics) , reliability engineering , physics , geometry , mathematics , quantum mechanics
Power system reliability and resiliency involves availability of uninterrupted power supply to loads. With ever-increasing natural and man-made disturbances in power grid, the need of alternate renewable based source of supply is gaining more attention. This paper presents an efficient renewable energy-based single stage configuration for standalone application to provide uninterrupted power supply to critical loads in case of grid power interruption. This configuration can also be used for grid integration during peak load demand of power. The advancement in research of Multilevel Inverter (MLI) relating to high voltage with high power energy control enabled increased use of MLI in renewable energy, especially PV and fuel cell-based systems. The renewable energy-based configuration proposed in this paper uses Cross T-Type (CT-Type) MLI which provides quality output power from solar PV, fuel cell etc. Moreover, the absence of any DC-DC converter reduces complexity and makes the system more economical for grid integration. The overall system performance improves compared to existing methods in terms of total harmonic distortion (THD), total standing voltage (TSV), number of levels, number of components requirement and efficiency.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here