
Numerical and Experimental Predication of the Structural Cracking Within Reinforced Concrete Structure due to Conventional State of Loading
Author(s) -
Hussam Ali Mohammed,
Hussein Abad Gazi Jaaz,
Ali Fadhil Naser,
Ayad Ali Mohammed
Publication year - 2021
Publication title -
international journal of safety and security engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.202
H-Index - 10
eISSN - 2041-904X
pISSN - 2041-9031
DOI - 10.18280/ijsse.110506
Subject(s) - cracking , structural engineering , finite element method , service life , deformation (meteorology) , ultimate load , engineering , computer science , materials science , mechanical engineering , composite material
It has been well understanding that the occurrence of various crack patterns in the building during its construction life (from first time of construction up to finishing) then subjected to super imposed load or during the service life. Cracks developed due to exceeding of stresses more than the allowable strength, wherever happened on building component. This research works used the finite element method as a powerful tool to simulate the behavior of full constructed building with both concrete system and brick bearing wall. Where the adopted numerical procedure allows to the users to predict the response of building elements due to conventional state of loading. one of the most important response features was the cracking phenomenon, where the numerical model shown that its capability to predict the cracking sequence from the first time of initiating. The prediction of full response and behavior of each element and their connection, shown that the precise of factor of safety used by the designer, where the analysis prove that the design load was about 67% from the cracking load, and the ultimate load was about 260% from the design load. That will allow more sustainability and stability for long time deformation. Beside the numerical solution, there was an experimental part of study, where site investigation, it shown that all data recorded was constant values and the building was stable. Actually, with no increasing of loading, the building reach its stable state, and defect will not develop. That basically because of good design within conventional state of loading.