
Statistical Analysis Based Survey of Indian Renewable Energy Scenario
Author(s) -
Radhika Swarnkar,
R Harikrishnan
Publication year - 2021
Publication title -
international journal of sustainable development and planning
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.29
H-Index - 15
eISSN - 1743-761X
pISSN - 1743-7601
DOI - 10.18280/ijsdp.160218
Subject(s) - renewable energy , fossil fuel , environmental science , electricity generation , per capita , nameplate capacity , solar energy , electricity , energy consumption , solar power , statistical analysis , environmental engineering , engineering , waste management , power (physics) , statistics , mathematics , electrical engineering , population , physics , demography , quantum mechanics , sociology
Renewable energy is a solution for electricity generation for cleaner and green energy. The aim of this paper is to find the energy potential of India in terms of sources, per-capita energy consumption and the main potential consumers. Comparing consumption of fossil fuels and Renewable energy sources (RES) of India in 2019 and 2020 and finally to find whether there is any change in energy generation of two solar power plants in different geographical location of India with the help of independent t-test statistics. In this paper two statistical analysis are proposed. One is the statistical analysis of installed capacity, generation and consumption of fossil fuels and renewable energy in India. Other one is the statistical analysis of two solar power plants located at different geographical locations in India. From the statistical analysis it is found that, installed capacity of coal, RES and hydro is increased in 2020 as compared to 2019. Total demand in January 2020 is 2,77,140.33 MW whereas total installed capacity is 3,71,126 MW, this means that installed capacity is more but are not in running condition. From the statistical analysis of two independent solar power plants it is found that solar power plant-1 generates more energy but with high conversion loss hence poor efficiency.