
Effect of Surface Motion on Heat Transfer and Pressure Force from Multiple Impinging Jets– A Numerical Study
Author(s) -
Ali Chitsazan,
Georg Klepp,
Birgit Glasmacher
Publication year - 2022
Publication title -
heat and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.283
H-Index - 29
ISSN - 0392-8764
DOI - 10.18280/ijht.400116
Subject(s) - jet (fluid) , mechanics , nozzle , nusselt number , surface (topology) , heat transfer , physics , materials science , optics , classical mechanics , geometry , thermodynamics , reynolds number , mathematics , turbulence
The effect of jet arrangement, jet Re number, jet exit angle (θ), the nozzle-to-surface distance (H/d), jet-to-jet spacing (S/d) on the heat transfer, and pressure force performance from multiple impinging round jets on a moving flat surface have been numerically evaluated. There is a minor difference between in-line and staggered arrangements on a moving flat surface. The averaged Nusselt number on a moving flat surface reduces with an increase in the relative velocity (VR). The surface motion effects become more pronounced on the local Nu distribution at low Re, small S/d, large H/d, and angled jets for a moving flat surface. The pressure force coefficient on a moving flat surface is highly dependent on the H/d and θ but relatively insensitive to the VR, Re, and S/d within the range examined. Two correlations are developed and validated for the average Nu and force coefficient and the agreement between the CFD and correlation is found to be reasonable.