z-logo
open-access-imgOpen Access
Performance Comparison Between Hot Mirror and Cold Mirror as a Beam Splitter on Photovoltaic - Thermoelectric Generator Hybrid Using LabVIEW Simulator
Author(s) -
Zuryati Djafar,
Andi Zahirah Salsabila,
Wahyu H. Piarah
Publication year - 2021
Publication title -
international journal of heat and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.283
H-Index - 29
ISSN - 0392-8764
DOI - 10.18280/ijht.390524
Subject(s) - optics , solar simulator , photovoltaic system , fresnel lens , beam splitter , materials science , irradiance , solar energy , radiation , wavelength , optoelectronics , curved mirror , physics , electrical engineering , lens (geology) , solar cell , engineering , laser
Solar energy can be converted into electrical energy using photovoltaic (PV) and thermoelectric generators (TEG). In order to increase the effectiveness of energy absorption, a hot mirror or cold mirror spectrum separator is used. In this study, a simulation was carried out to see the effect of the cold mirror and hot mirror spectrum separator on the performance of the PV-TEG hybrid. Simulations are carried out using the LabVIEW program. The standard for the solar radiation spectrum used is AM1.5D. The incoming radiation is transmitted using a Fresnel lens to make it more focused and then transmitted to a cold mirror or hot mirror, where the spectral irradiance will be halved. Spectral irradiance with a wavelength of 400-690 nm will be directed to PV and a wavelength of 710-1150 nm will be directed to TEG. From the PV-TEG hybrid modeling and simulation using the LabVIEW program, the resulting power and efficiency are 240.635 W/m2 and 27% respectively for cold mirror and 228.835 W/m2 and 25.76% for hot mirror.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom