
A Numerical Study for a Double Twisted Tube Heat Exchanger
Author(s) -
Ali k. Abdul Razzaq,
Khudheyer S. Mushatet
Publication year - 2021
Publication title -
heat and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.283
H-Index - 29
ISSN - 0392-8764
DOI - 10.18280/ijht.390521
Subject(s) - concentric tube heat exchanger , shell and tube heat exchanger , heat exchanger , materials science , pressure drop , mechanics , heat transfer , plate heat exchanger , tube (container) , plate fin heat exchanger , thermodynamics , turbulence , dynamic scraped surface heat exchanger , micro heat exchanger , heat transfer coefficient , composite material , physics , critical heat flux
The thermal and fluid physiognomies of a double twisted tube heat exchanger was examined numerically. Twisted engineering is a wide-use method to improve heat transfer in heat exchangers. A counter-flow mode utilizing hot water in the inner tube and cold air in the outer tube was considered. This study aims to progress the thermal performance of the double tube heat exchanger by using twisted tubes instead of plane tubes. The heat exchanger was (1m) length, outer diameter (0.05m) and inner diameter (0.025m), both with a thickness (0.004m). It was tested for different values of twist ratios (Tr= 5, 10, and 15 respectively) and Reynolds numbers (Re=5000 to 30000). The Navier - Stockes and energy equations besides the turbulence model in demand for modelling this physical problem. ANSYS Fluent code was used for the numerical simulation. The results showed that the twisted tube heat exchanger showed increasing heat transfer compared with a plain tube heat exchanger. It was found that the cold outlet temperature, pressure drop and effectiveness are increased as the twist ratio increases.