
Increasing the Productivity and Efficiency of Water Use by Reserving Water
Author(s) -
Ali Hassan Hommadi,
Wisam Abdulabbas Abidalla,
Ahmed Sami Naser
Publication year - 2021
Publication title -
international journal of design and nature and ecodynamics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.193
H-Index - 13
eISSN - 1755-7445
pISSN - 1755-7437
DOI - 10.18280/ijdne.160208
Subject(s) - irrigation , water use efficiency , dns root zone , environmental science , water content , water use , productivity , agronomy , yield (engineering) , deficit irrigation , field experiment , growing season , soil water , mathematics , irrigation management , soil science , engineering , materials science , geotechnical engineering , macroeconomics , metallurgy , economics , biology
One use of technology in agriculture involves setting up a reserving sheet for subsurface moisture under the root zone of wheat crops, which is symbolized by SWRT, to conserve the water in the root zone. This reduces the field water losses by raising the efficiency of water use (WUE) and economical water productivity (EWP). For this study, an SWRT membrane sheet was put under the root zone of wheat crops throughout the growing season, from the winter of November 2019 to the end of the season in April 2020, in a free field. The study was conducted on a private farm located in the province of Babylon in Sadat Al-Hindya Town, which is approximately 70 km from the capital (Baghdad). Surface irrigation was utilized for the irrigation of the wheat crops. Two methods were used: method A1 utilized the SWRT sheet and method A2 was conducted without the SWRT sheet. The irrigation water supply, irrigation period, and soil water content before and after irrigation were computed and recorded every day for the A1 and A2 methods. The values of wheat crop production (yield), water use efficiency, and economical water productivity from the two plots were computed and compared. The results obtained for water use efficiency for the two methods, A1 and A2, were 0.51 and 0.47 kg/m3, respectively. The increment in yield of plot A1 compared with plot A2 was 6.45%. The increment in WUE of plot A1 compared with plot A2 was 8.55%. In addition, the WP of the wheat crop for plots A1 and A2 were 144.44 and 119.16 ID/m3, respectively, while the increment in WP of plot A1 compared with plot A2 was 21.21%. The findings show that the SWRT method prevents the environmental effects of pesticide and fertilizers that enter the groundwater and pollute it. This technology assists in saving water and plant nutrients, and prevents pollution of the groundwater from pesticides and excess fertiliser.