
Strength Control Factors of Chlorite Schist under Schistose Structure
Author(s) -
Shen Yan,
Qiankuan Wang,
Hongfei Wang,
Shili Qiu,
Zhiquan Zeng,
Yue Fang
Publication year - 2020
Publication title -
international journal of design and nature and ecodynamics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.193
H-Index - 13
eISSN - 1755-7445
pISSN - 1755-7437
DOI - 10.18280/ijdne.150503
Subject(s) - schist , chlorite , weathering , bedding , geology , geotechnical engineering , geochemistry , metamorphic rock , paleontology , quartz , horticulture , biology
In tunnel engineering, it is important to understand the influence of schistose structure on the failure strength of chlorite schist. To explore the strength control factors of chlorite schist, this paper firstly analyzes the mineral composition and meso structure of chlorite schist of different weathering states. The results show that the mineral composition of chlorite schist is changed during the weathering process, and that chlorite is an anisotropic rock mass. Next, a series of uniaxial compressive tests were conducted on chlorite schist samples with different bedding angles (the angle between bedding plane and loading direction; θ=0°, 15°, 30°, 45°, 60°, 75°, and 90°), moisture conditions (dry and saturated), and weathering states (strongly weathered and weakly weathered). Based on the test data, the authors discussed the change laws of the rock strength with bedding angle, weathering state, and moisture condition. The main results are as follows: Chlorite schist is a low-anisotropy rock mass, whose compressive strength exhibited a V-shaped trend with the growing bedding angle; the schistose structure is the internal cause of the deformation and the anisotropic or transversely isotropic strength of the schist; the schistose structure is reshaped and further damaged by external factors (e.g. water softening and weathering effects) in engineering. The research findings help to improve the rock stability and support design in tunnel engineering.