z-logo
open-access-imgOpen Access
Conduction Band Offset Effect on the Cu2ZnSnS4 Solar Cells Performance
Author(s) -
Ahmed Redha Latrous,
Ramdane Mahamdi,
N. Touafek,
M. Pasquinelli
Publication year - 2021
Publication title -
annales de chimie science des matériaux
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.158
H-Index - 29
eISSN - 1958-5934
pISSN - 0151-9107
DOI - 10.18280/acsm.450601
Subject(s) - czts , kesterite , work function , conduction band , acceptor , energy conversion efficiency , materials science , band offset , valence band , optoelectronics , solar cell , analytical chemistry (journal) , layer (electronics) , chemistry , band gap , electron , condensed matter physics , nanotechnology , physics , quantum mechanics , chromatography
Among the causes of the degradation of the performance of kesterite-based solar cells is the wrong choice of the n-type buffer layer which has direct repercussions on the unfavorable band alignment, the conduction band offset (CBO) at the interface of the absorber/buffer junction which is one of the major causes of lower VOC. In this work, the effect of CBO at the interface of the junction (CZTS/Cd(1-x)ZnxS) as a function of the x composition of Zn with respect to (Zn+Cd) is studied using the SCAPS-1D simulator package. The obtained results show that the performance of the solar cells reaches a maximum values (Jsc = 13.9 mA/cm2, Voc = 0.757 V, FF = 65.6%, ɳ = 6.9%) for an optimal value of CBO = -0.2 eV and Zn proportion of the buffer x = 0.4 (Cd0.6Zn0.4S). The CZTS solar cells parameters are affected by the thickness and the concentration of acceptor carriers. The best performances are obtained for CZTS absorber layer, thichness (d = 2.5 µm) and (ND = 1016 cm-3). The obtained results of optimizing the electron work function of the back metal contact exhibited an optimum value at 5.7 eV with power conversion efficiency of 13.1%, Voc of 0.961 mV, FF of 67.3% and Jsc of 20.2 mA/cm2.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom