z-logo
open-access-imgOpen Access
Microstructure and Mechanical Properties of the 55CrMoV4 Steel Exposed to Boriding and Nitriding Treatments
Author(s) -
Benhabib Bensalah,
Allaoui Omar,
Djeghlal Mehammad Elamine
Publication year - 2021
Publication title -
annales de chimie, science des matériaux/annales de chimie
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.158
H-Index - 29
eISSN - 1958-5934
pISSN - 0151-9107
DOI - 10.18280/acsm.450404
Subject(s) - boriding , nitriding , boride , materials science , metallurgy , microstructure , indentation hardness , nitride , layer (electronics) , composite material
In this study boriding and nitriding treatments were carried out on 55CrMoV4 low alloyed steel. The thermochemical treatments were carried out in solid medium by the powder technique at 900℃ for 4 hours for boriding treatment and at a temperature of 550℃ for 12 hours for nitriding treatment. The phases analysis of the boride and nitrite layers formed on the surface was carried out by optical microscopy (OM), and X-ray diffraction (XRD). The results of the surface analysis show that the boride and nitride layers a presence of FeB, Fe2B, CrN, Fe3N and Fe4N compounds. The thickness of boride layers and nitride layers was found to be 55 and 12 µm, respectively. Microhardness of boride and nitride layers are between 800 HV0.2 and 1200 HV0.2. Corrosion tests by immersion in a 1M HCl solution have shown the beneficial effect of boriding and nitriding treatments on treated steels. Increase in corrosion resistances was observed after nitriding and boriding treatment steel 55CrMoV4 was around 6 times.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here