
Carbonization Law of Fly Ash Concrete under Freeze-Thaw Cycles Based on Image-Pro Plus
Author(s) -
Jing Yuan,
Boxin Zhao,
Zhenqiang Wang,
Yan Liu
Publication year - 2020
Publication title -
annales de chimie, science des matériaux/annales de chimie
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.158
H-Index - 29
eISSN - 1958-5934
pISSN - 0151-9107
DOI - 10.18280/acsm.440604
Subject(s) - fly ash , carbonization , carbonation , materials science , durability , environmental science , pulp and paper industry , composite material , waste management , engineering , scanning electron microscope
To understand the influence of freeze-thaw on the carbonization performance of concrete in severe cold areas, this paper conducted experiments to explore the carbonization law of fly ash concrete under freeze-thaw cycles. First, carbonization tests were conducted under different freeze-thaw cycles and fly ash contents; then PS (Photoshop) and IPP (Image-Pro Plus) were adopted to measure the carbonized area and calculate the ratio of carbonized area (RCA). The experimental results showed that, when the fly ash content was between 10% and 30%, RCA increased slowly; when the fly ash content was 20%, the convergence point showed up; when the fly ash content was 0, the air-entrained fly ash concrete had the best resistance to carbonation. With the help of PS and IPP, this paper calculated the RCA more accurately and found that, the freeze-thaw cycles can aggravate carbonization, and there is a linear relationship between carbonization depth and RCA. The research findings in this paper can provide a reference for the durability evaluation and design of concrete structures in severe cold areas.