
Platform-independent Specification and Verification of the Standard Mathematical Square Root Function
Author(s) -
Nikolay V. Shilov,
Дмитрий Александрович Кондратьев,
Igor S. Anureev,
Евгений Викторович Бодин,
Алексей Владимирович Промский
Publication year - 2018
Publication title -
modelirovanie i analiz informacionnyh sistem
Language(s) - English
Resource type - Journals
eISSN - 2313-5417
pISSN - 1818-1015
DOI - 10.18255/1818-1015-2018-6-637-666
Subject(s) - correctness , mathematical proof , computer science , square root , consistency (knowledge bases) , algorithm , theoretical computer science , arithmetic , programming language , mathematics , artificial intelligence , geometry
The project “Platform-independent approach to formal specification and verification of standard mathematical functions” is aimed onto the development of incremental combined approach to specification and verification of standard Mathematical functions like sqrt, cos, sin, etc. Platform-independence means that we attempt to design a relatively simple axiomatization of the computer arithmetics in terms of real arithmetics (i.e. the field \(\mathbb{R}\) of real numbers) but do not specify neither base of the computer arithmetics, nor a format of numbers representation. Incrementality means that we start with the most straightforward specification of the simplest case to verify the algorithm in real numbers and finish with a realistic specification and a verification of the algorithm in computer arithmetics. We call our approach combined because we start with manual (pen-and-paper) verification of the algorithm in real numbers, then use this verification as proof-outlines for a manual verification of the algorithm in computer arithmetics, and finish with a computer-aided validation of the manual proofs with a proof-assistant system (to avoid appeals to “obviousness” that are common in human-carried proofs). In the paper, we apply our platform-independent incremental combined approach to specification and verification of the standard Mathematical square root function. Currently a computer-aided validation was carried for correctness (consistency) of our fix-point arithmetics and for the existence of a look-up table with the initial approximations of the square roots for fix-point numbers.