
Inhibition of TGF-β2-induced migration and epithelial-mesenchymal transition in ARPE-19 by sulforaphane
Author(s) -
Yong Huang,
Pingping Li,
Hui Zheng,
Xiuxia Yang,
Chengcheng Yang,
Ye Liu,
Yang Liu
Publication year - 2021
Publication title -
international journal of ophthalmology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.634
H-Index - 29
eISSN - 2227-4898
pISSN - 2222-3959
DOI - 10.18240/ijo.2021.07.03
Subject(s) - epithelial–mesenchymal transition , fibronectin , stress fiber , cell migration , sulforaphane , smad , protein kinase b , actin , transforming growth factor , phosphorylation , microbiology and biotechnology , medicine , cell , cancer research , chemistry , biology , transition (genetics) , biochemistry , focal adhesion , extracellular matrix , gene
AIM: To investigate the effects of sulforaphane (SFN) on transforming growth factor (TGF)-β2 stimulated migration and epithelial-mesenchymal transition (EMT) in ARPE-19 cells.METHODS: ARPE-19 cells were cultured in the presence or absence of SFN or TGF-β2. SFN toxicity was assessed by performing a lactate dehydrogenase assay (LDH) and 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assays, and cell migration was evaluated by Transwell migration assay. Actin stress fiber formation in ARPE-19 cells was determined using immunofluorescence analysis. Immunoblotting analysis was used to determine fibronectin and α-smooth muscle actin expressions along with the degree of Smad and Akt phosphorylation.RESULTS: SFN inhibited ARPE-19 migration. Additionally, SFN attenuated TGF-β2-induced appearance of actin stress fibers as well as fibronectin and α-smooth muscle actin expressions in these cells. SFN also hindered the TGF-β2-stimulated phosphorylation of Smad2, Smad3, and Akt. SFN showed no cytotoxicity towards ARPE-19 cells.CONCLUSION: SFN inhibits TGF-β2-stimulated migration and EMT in ARPE-19 cells, probably by preventing the establishment of actin stress fibers and Akt and Smad2/3 signaling.