
A Novel Weighted Ensemble Method to Overcome the Impact of Under-fitting and Over-fitting on the Classification Accuracy of the Imbalanced Data Sets
Author(s) -
Ghulam Fatima,
Sana Saeed
Publication year - 2021
Publication title -
pakistan journal of statistics and operation research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.354
H-Index - 15
eISSN - 2220-5810
pISSN - 1816-2711
DOI - 10.18187/pjsor.v17i2.3640
Subject(s) - support vector machine , decision tree , data mining , sampling (signal processing) , artificial neural network , computer science , artificial intelligence , machine learning , mathematics , pattern recognition (psychology) , filter (signal processing) , computer vision
In the data mining communal, imbalanced class dispersal data sets have established mounting consideration. The evolving field of data mining and information discovery seeks to establish precise and effective computational tools for the investigation of such data sets to excerpt innovative facts from statistics. Sampling methods re-balance the imbalanced data sets consequently improve the enactment of classifiers. For the classification of the imbalanced data sets, over-fitting and under-fitting are the two striking problems. In this study, a novel weighted ensemble method is anticipated to diminish the influence of over-fitting and under-fitting while classifying these kinds of data sets. Forty imbalanced data sets with varying imbalance ratios are engaged to conduct a comparative study. The enactment of the projected method is compared with four customary classifiers including decision tree(DT), k-nearest neighbor (KNN), support vector machines (SVM), and neural network (NN). This evaluation is completed with two over-sampling procedures, an adaptive synthetic sampling approach (ADASYN), and a synthetic minority over-sampling (SMOTE) technique. The projected scheme remained efficacious in diminishing the impact of over-fitting and under-fitting on the classification of these data sets.