
A New Lifetime Model: Copulas, Properties and Real Lifetime Data Applications
Author(s) -
Wahid A. M. Shehata
Publication year - 2021
Publication title -
pakistan journal of statistics and operation research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.354
H-Index - 15
eISSN - 2220-5810
pISSN - 1816-2711
DOI - 10.18187/pjsor.v17i1.3599
Subject(s) - lomax distribution , mathematics , monotonic function , mean squared error , statistics , skewness , estimator , maximum likelihood , mathematical analysis
A new four parameter lifetime model called the Weibullgeneralized Lomax is proposed and studied. The new density function can be "right skewed", "symmetric" and "left skewed" and its corresponding failure rate function can be "monotonically decreasing", " monotonically increasing" and "constant". The skewness of the new distribution can negative and positive. The maximum likelihood method is employed and used for estimating the model parameters. Using the "biases" and "mean squared errors", we performed simulation experiments for assessing the finite sample behavior of the maximum likelihood estimators. The new model deserved to be chosen as the best model among many well-known Lomax extension such as exponentiated Lomax, gamma Lomax, Kumaraswamy Lomax, odd log-logistic Lomax, Macdonald Lomax, beta Lomax, reduced odd log-logistic Lomax, reduced Burr-Hatke Lomax, reduced WG-Lx, special generalized mixture Lomax and the standard Lomax distributions in modeling the "failure times" and the "service times" data sets.