
Classical and Bayesian Estimation of Stress-Strength Reliability from Generalized Inverted Exponential Distribution based on Upper Records
Author(s) -
Majid Jamal Khan,
Bushra Khatoon
Publication year - 2019
Publication title -
pakistan journal of statistics and operation research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.354
H-Index - 15
eISSN - 2220-5810
pISSN - 1816-2711
DOI - 10.18187/pjsor.v15i3.2716
Subject(s) - mathematics , bayes estimator , estimator , statistics , minimum variance unbiased estimator , exponential distribution , mean squared error , efficient estimator , confidence interval , credible interval
This paper deals with the problem of classical and Bayesian estimation of stress-strength reliability (R=P(X<Y)) based on upper record values from generalized inverted exponential distribution (GIED). Hassan {et al.} (2018) discussed the maximum likelihood estimator (MLE) and Bayes estimator of $R$ by considering that the scale parameter to be known for defined distribution while we consider the case when all the parameters of GIED are unknown. In the classical approach, we have discussed MLE and uniformly minimum variance estimator (UMVUE). In Bayesian approach, we have considered the Bays estimator of R by considering the squared error loss function. Further, based on upper records, we have considered the Asymptotic confidence interval based on MLE, Bayesian credible interval and bootstrap confidence interval for $R$. Finally, Monte Carlo simulations and real data applications are being carried out for comparing the performances of the estimators of R.