z-logo
open-access-imgOpen Access
Boosted Supervised Intensional Learning Supported by Unsupervised Learning
Author(s) -
A.C.M. Fong,
Hong Gao
Publication year - 2021
Publication title -
international journal of machine learning and computing
Language(s) - English
Resource type - Journals
ISSN - 2010-3700
DOI - 10.18178/ijmlc.2021.11.2.1020
Subject(s) - computer science , artificial intelligence , machine learning , cluster analysis , mnist database , unsupervised learning , preprocessor , boosting (machine learning) , supervised learning , artificial neural network , labeled data , transparency (behavior) , computer security
Traditionally, supervised machine learning (ML) algorithms rely heavily on large sets of annotated data. This is especially true for deep learning (DL) neural networks, which need huge annotated data sets for good performance. However, large volumes of annotated data are not always readily available. In addition, some of the best performing ML and DL algorithms lack explainability – it is often difficult even for domain experts to interpret the results. This is an important consideration especially in safety-critical applications, such as AI-assisted medical endeavors, in which a DL’s failure mode is not well understood. This lack of explainability also increases the risk of malicious attacks by adversarial actors because these actions can become obscured in the decision-making process that lacks transparency. This paper describes an intensional learning approach which uses boosting to enhance prediction performance while minimizing reliance on availability of annotated data. The intensional information is derived from an unsupervised learning preprocessing step involving clustering. Preliminary evaluation on the MNIST data set has shown encouraging results. Specifically, using the proposed approach, it is now possible to achieve similar accuracy result as extensional learning alone while using only a small fraction of the original training data set.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here