z-logo
open-access-imgOpen Access
Efficient Human-Robot Interaction using Deep Learning with Mask R-CNN: Detection, Recognition, Tracking and Segmentation
Author(s) -
Than Le,
Dang Huynh
Publication year - 2018
Publication title -
progress in human computer interaction
Language(s) - English
Resource type - Journals
ISSN - 2630-4627
DOI - 10.18063/phci.v1i2.783
Subject(s) - artificial intelligence , computer vision , segmentation , computer science , deep learning , tracking (education) , robot , human–robot interaction , pattern recognition (psychology) , psychology , pedagogy
我们通过提出深度神经网络与机械机器人系统的集成来解决社会人机交互问题使其对人机交互活动具有鲁棒性。掩模R-CNN是一种用于物体检测的神经网络可以有效地帮助定位可以被操纵以指示机器人头部运动的人脸。我们的方法不仅适用于检测和分割任务而且能够与表示3D尺寸的并行微型机械手的机制工作空间的位置和方向集成。它还可以解决目标分割问题这似乎是当今计算机视觉中最具挑战性的问题之一。

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom