
3D Topology Optimization and Mesh Dependency for Redesigning Locking Compression Plates Aiming to Reduce Stress Shielding
Author(s) -
Abdulsalam Abdulaziz Al-Tamimi
Publication year - 1970
Publication title -
international journal of bioprinting
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.014
H-Index - 24
eISSN - 2424-7723
pISSN - 2424-8002
DOI - 10.18063/ijb.v7i3.339
Subject(s) - stress shielding , materials science , topology optimization , stiffness , structural engineering , electromagnetic shielding , torsion (gastropod) , compression (physics) , composite material , finite element method , stress (linguistics) , engineering , surgery , medicine , linguistics , philosophy , implant
Current fixation plates for bone fracture treatments are built with biocompatible metallic materials such as stainless steel, titanium, and its alloys (e.g., Ti6Al4V). The stiffness mismatch between the metallic material of the plate and the host bone leads to stress shielding phenomena, bone loss, and healing deficiency. This paper explores the use of three dimensional topology-optimization, based on compliance (i.e., strain energy) minimization, reshaping the design domain of three locking compression plates (four-screw holes, six-screw holes, and eight-screw holes), considering different volume reductions (25, 45, and 75%) and loading conditions (bending, compression, torsion, and combined loads). A finite-element study was also conducted to measure the stiffness of each optimized plate. Thirty-six designs were obtained. Results showed that for a critical value of volume reductions, which depend on the load condition and number of screws, it is possible to obtain designs with lower stiffness, thereby reducing the risk of stress shielding.