z-logo
open-access-imgOpen Access
Regulation of Human NK Cell Activation by Expression of HLA Class I Molecules in Pig Endothelial Cells
Author(s) -
Benjamin Obando,
Arthur A. Cross-Najafi,
Kevin Lopez,
Deepthi Thadasina,
Wenjun Zhang,
Abdulkadir Isidan,
Yujin Park,
Gonzalo Campaña,
Ping Li,
Burcin Ekser
Publication year - 2021
Publication title -
proceedings of imprs
Language(s) - English
Resource type - Journals
ISSN - 2641-2470
DOI - 10.18060/25715
Subject(s) - microbiology and biotechnology , human leukocyte antigen , chemistry , endothelial stem cell , immunology , biology , biochemistry , antigen , in vitro
Background:   Pig-to-human xenotransplantation (XTx) is a promising solution to the organ shortage. Genetically engineered pigs lacking major xenoantigens have reduced hyperacute rejection and prolonged xenograft survival. Despite these advancements, acute xenograft rejection (AXR) remains a major barrier to clinical XTx. AXR is mediated by multiple immune cells, of which natural killer (NK) cells play a crucial role. Previous studies have shown that human HLA-E suppresses NK cell activation through the inhibitory receptor NKG2A. We seek to improve pig-to-human compatibility by expressing HLA-E in a genetically modified pig endothelial cell (pEC) line. This cell line 5GKO/ HLA-G+ has mutations in five genes encoding for xenoantigens and expresses HLA-G, an inhibitory ligand of the NK cell receptor KIR2DL4. In this study, the 5GKO/HLA-G+/HLA-E+ pEC line was established to examine whether co-expression of inhibitory ligands promotes NK cell tolerance.      Methods:   The HLA-Eα/pCDNA3.1 plasmid containing the HLA-E α-chain (HLA-Eα) cDNA driven by a CMV promoter was linearized and introduced into 106 cells of the 5GKO/HLA-G+ pEC line by electroporation. After 48 hours, HLA-E expression was analyzed by flow cytometry. HLA-E+ pECs were isolated by flow cytometry sort and co-cultured with human peripheral blood mononuclear cells (PBMCs) stimulated by IL-2. NK cell degranulation was compared between the 5GKO/HLA-G+ and 5GKO/HLA-G+/HLA-E+ pEC lines by measuring CD107a expression in the CD3- CD56+ cell population.          Results:   HLA-E molecules were successfully expressed on the pECs surface, indicating the HLA-E a chain can pair with the existing b2-microglobulin (B2M). The transfection efficiency was 38.2%. Three weeks later, the 5GKO/HLA-G+/HLA-E+ pEC was successfully established, confirming via flow cytometric analysis. The analysis of NK cell degranulation (CD107a) is underway.     Conclusion:   We established a 5GKO/HLA-G+/HLA-E+ pEC line, which is a valuable tool to study human-to-pig xenoreactive immune response in vitro, with the goal of improving pig-to-human xenograft immunotolerance. 

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom